Gradient-based boosting for statistical relational learning: The relational dependency network case
نویسندگان
چکیده
منابع مشابه
Boosting Relational Dependency Networks
Relational Dependency Networks (RDNs) are graphical models that extend dependency networks to relational domains where the joint probability distribution over the variables is approximated as a product of conditional distributions. The current learning algorithms for RDNs use pseudolikelihood techniques to learn probability trees for each variable in order to represent the conditional distribut...
متن کاملAdaptive Incremental Learning for Statistical Relational Models Using Gradient-Based Boosting
We consider the problem of incrementally learning models from relational data. Most existing learning methods for statistical relational models use batch learning, which becomes computationally expensive and eventually infeasible for large datasets. The majority of the previous work in relational incremental learning assumes the model’s structure is given and only the model’s parameters needed ...
متن کاملImitation Learning in Relational Domains: A Functional-Gradient Boosting Approach
Imitation learning refers to the problem of learning how to behave by observing a teacher in action. We consider imitation learning in relational domains, in which there is a varying number of objects and relations among them. In prior work, simple relational policies are learned by viewing imitation learning as supervised learning of a function from states to actions. For propositional worlds,...
متن کاملContext-based statistical relational learning
The relational structure is an important source of information, which is often ignored by the traditional statistical learning methods. Thus this thesis focuses on how to explicitly exploit such relational information in statistical learning tasks so as to build more effective and more robust models. The main methodology used in the thesis is derived from context-based modeling and analysis. Se...
متن کاملLearning Relational Dependency Networks for Relation Extraction
We consider the task of KBP slot filling – extracting relation information from newswire documents for knowledge base construction. We present our pipeline, which employs Relational Dependency Networks (RDNs) to learn linguistic patterns for relation extraction. Additionally, we demonstrate how several components such as weak supervision, word2vec features, joint learning and the use of human a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2011
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-011-5244-9